Posts Tagged ‘thorium’

h1

Nuclear Collection (Part V)

May 13, 2010

Today’s long menu includes more radioactive pottery, more radioactive vacuum tubes, smoke detectors, a couple lesser-known radioactive elements, and a few interesting odds and ends. As always, if you have something radioactive and in need of a good home, I buy and trade all the time.  Enjoy!

Uranium-glazed artistic pottery is hard to come by, in contrast to the mass-produced (and mass-collected) Fiestaware and similar.  Here are two examples of handmade ceramics.  Especially interesting is a vase made in 2010 (left) that is representative of the work of crystalline-glaze artist William Melstrom, who has a studio in Austin, Texas (photo courtesy of Mr. Melstrom).  Melstrom is one of very few contemporary artists who have gone to the lengths required nowadays to work with uranium.  His adventuresome report on obtaining uranium compounds in France to formulate his glazes is a must-read.  The fluorescent light yellow glaze on this vase clocks in at 2200 CPM on a 2″ pancake GM tube.  At right is a hand-thrown and hand-glazed  decorative bowl from an unknown artist containing a typical “uranium red” glaze.  It registers 38,000 CPM on a 2″ pancake GM tube, making it among the hottest pieces of pottery in my collection.

.

These raw ceramic underglazes containing uranium are a gift from William Melstrom, who made the vase pictured above.  Before Melstrom owned them, they were in the possession of a radiation safety officer at the Texas Department of State Health Services, slated for official disposal as radioactive waste.  Because so few artists use or even know about uranium glazes now, old bottles such as these sometimes present surprise disposal problems when studios are cleaned out.  Both are products of Thompson Enamel and both read about 12,000 CPM on a 2″ pancake GM tube.  At left is a “531 Burnt Orange” (when fired, of course), and at right is a “108 Forsythia.”

.

This is a 6″ Corning uranium-glass optical filter I recently obtained on eBay.  The uranium concentration is through the roof: it emits 11,000 CPM into a 2″ pancake GM tube, making it more than twice as hot as the hottest decorative vaseline glass items I own.

Some other interesting properties of uranium glass are dramatically demonstrated with this example.  In the second photo, ultraviolet light from a distant Sun-Kraft lamp (an electrodeless quartz-mercury discharge tube) excites the uranium glass, provoking the characteristic green fluorescence.  Based absorption of the  lamp’s harsh 254-nanometer UVC radiation, it’s easy to distinguish a quartz crucible (casting the central shadow) from the nearly-opaque borosilicate tube (left) and soda-lime glass vial (right).

Uranium glass is also apparently a fair scintillation medium.  In the lower photo, a thin face of the Corning filter abuts the output window of a commercial x-ray machine, where exposure rates are on the order of 1000 roentgen / hour.  The glass glows its characteristic green color as the x-ray beam expands across its surface.

.

Lanthanum and lutetium are two of the lesser-known natural radioactive elements.  Although there are other natural, primordial radioelements (e.g. V-50, Rb-87, Sm-147, Re-187, In-115), these two stand out (along with good old potassium) for their usefully high gamma activity.   Both could be used as check sources or energy calibration sources for scintillation detectors.  La-138 (0.09% abundance, T1/2 = 1.02E+11 y) decays by electron capture or beta emission, unleashing gamma rays in either branch.  A ~50-g specimen of the metal (inset, left) racked up 7.2 counts / sec above background into a 2″ NaI:Tl detector.  Lu-176 (2.6% abundance, T1/2 = 3.78E+10 y) undergoes beta decay with a high yield of several gamma energies, most notably at 202 and 307 keV.  The peak at 509 keV in the spectrum is not a real gamma energy, but rather a “sum peak” caused by 202- and 307-keV gammas simultaneously entering the detector (this happens to be an “anomalous” sum peak, larger than would occur by random summation, precisely because the two radiations involved are frequently part of the same decay sequence).  The 23-g chunk of lutetium in the right inset veritably boils a 2″ NaI:Tl detector with more than 120 counts / sec above background.

.

More radioactive vacuum tubes. At right are three similar radar TR switches and their packaging (left to right: Bomac JAN-CBNQ-5883 from 1961 originally containing 0.3 µCi of Co-60; a Westinghouse 1B37 from 1952 containing several µCi or Ra-226; a GE 1B35 containing a small amount of Co-60.  At left, a spark gap (in hand) originally with 5 µCi of Cs-137 and a dual TR switch originally containing less than 0.7 µCi of Co-60.

.

Ionization smoke detectors contain an alpha emitter, typically Am-241.  The left-most pic shows industrial smoke detectors from ca. 1960, each containing a total of 80 microcuries of Am-241.  These detectors measured the current imbalance between an exposed “sense chamber” and a sealed “reference chamber,” both of which contained alpha sources.  In front of the detectors are examples of their sense-chamber sources, which hold the greater amount of activity (~60 microcuries).  Left is a Pyrotronics F5-B4 with its annular source holder bearing six thin sealed sources; at right is an F3/5A and its pedestal source, containing a single foil covered by a screw-adjustable bonnet.  More modern detectors are shown in the upper-right image: At left is a Simplex 2098-9508 with 4.5 µCi of Am-241, manufactured in 1980, and at right a run-of-the-mill modern detector with the typical  1-µCi source.  The lower right photo shows a Ra-226 foil source from a batch of smoke detectors, make unknown, that was intercepted on its way into a Pennsylvania junkyard.  Approximate activity is 1 microcurie.

.

Tritium glow-in-the-dark devices include emergency exit signage and the button at right.  Self-luminous exit signs are undoubtedly the most radioactive items in peoples’ everyday experience, but few probably realize it.   They can contain up to 20 curies of H-3 (tritium) gas in the glowing phosphor-lined tubes, as does the example shown here.  They are regulated under a General License by the Nuclear Regulatory Commission (see yellow sticker in right image).  Though initially costly, these self-powered signs easily deliver value over the life of a building by eliminating the need to conduct tests and change light bulbs.  Numerous outlets sell them on the Internet; they can also frequently be found at bargain prices on eBay (when the NRC isn’t looking).   The lower pic shows an old luminous button that originally contained 0.1 Ci of tritium.  This item replaced more hazardous predecessors containing radium.   Common consumer goods containing tritium today include “Traser” keychain lights (technically illegal in the USA as a “frivolous use” of radioactive material) and Trijicon gun sights.

.

Kodak 8-mm film projector (left) and camera (right) with radioactive thorium lenses. High refractive index and low dispersion justified the use of thoria in optical glass formulations.  The film projector’s 22-mm, f/1.0 Projection Ektar lens clocks in at 1200 CPM on contact with a 2″ pancake GM tube, while the camera’s lens only reads about 250 CPM.

.

Radium postcard, ca. 1930, from Luther Gable quack outfit. Ah, the good old days when you could just send loose radioactive contamination through the freaking mail! This postcard bearing a dollop of glow-in-the-dark radium paint (11,000 CPM on a 2″ pancake GM tube) promoted Dr. Luther Gable, the man responsible for the notorious Gable Ionic Charger.  A number of these cards were found in a collection of magician’s tricks.

.

The “Becquerel Chemicals” educational kit manufactured by Damon contains six small plastic boxes labeled A through F.  The contents of three are yellow powders, the contents of the other three are white crystals.  Students were intended to exploit physical and chemical properties—including radioactivity—to identify these unknowns from a list consisting of uranyl sulfate, sodium sulfate, uranyl nitrate, sodium nitrate, thorium nitrate, and sulfur.

h1

Nuclear Collection (Part III)

April 1, 2009

Radioactive chemical reagents (and a bit of non-radioactive fake yellowcake) constitute this instalment of my Nuclear Collection feature.

u_metal_lazarDepleted uranium metal from United Nuclear. These two rough-hewn triangular slabs weigh in at about 13 g apiece.  No idea what Bob Lazar cut up to put these on the market, but they’re not a bad deal while they last. They sport very rough, sharp edges and have to be stored under oil because of the risk of pyrophoric ignition.  Uranium fires are a bummer, especially when they occur in your living room.

conquista_uFake yellowcake memento from the Conquista Project.  About 20 cm3 of a canaryyellow, non-radioactive powder that resembles a diuranate salt is contained in a small vial embedded in this commemorative plastic paperweight.  The Conoco-Pioneer strip mining and milling operations in Karnes County, Texas commenced in 1971, for a time producing most of that state’s uranium.

u308_timkoethReal yellowcake, or actually a chemically-pure grade of depleted U3O8 in a 1-lb reagent bottle from Research Organic /Inorganic Chemical Corp.  After calcining, this is indeed what most modern “yellowcakes” resemble both in chemistry and appearance.  This bottle is a gift from another amateur scientist.

uranyl_acetate_2Uranyl acetate reagent bottles.  Uranyl acetate is still widely available as an electron-microscopy stain.  It’s a beautiful color, and like most uranyl salts, exhibits striking UV fluorescence.  The yellow crystals have a faint odor of vinegar.  Likely they taste accordingly (although taking uranium internally is generally frowned upon).

c14_vial_2Vial of urea labeled with 50 microcuries of carbon-14.  C-14 is a weak beta emitter that is best known for its role in carbon dating.  Because of the importance of carbon in biological processes (durrrh!), C-14 is also useful as a tracer in research, which is the suspected purpose of this product from New England Nuclear.  The label says “Use only as authorized by Atomic Energy Commission,” effectively dating this carbon to 1974 or earlier.  Activity is only detectable by removing the lid and holding a Geiger tube over the opening.

bi_210Calibrated bismuth-210 beta sources. Bi-210, or archaically “radium E”, appears in the uranium decay series.  The sources actually contain lead-210 (radium D) with a half-life of 22 years in secular equilibrium with the 5-day Bi-210 daughter.  The weak betas from Pb-210 are absorbed in the source, while the 1.2-MeV betas from Bi-210 are free to escape.  The set is incomplete; present are four sources ranging in activity from 7.73 nCi to 0.364 μCi (measured in 1962).

thorium_bottle_2Quarter pound of thorium nitrate. This bottle of Baker ACS-grade reagent is still sealed, preventing radon from escaping and allowing the delicious thorium decay chain to build up.  The penultimate thorium decay product, thallium-208, is responsible for one of the most energetic gamma rays found in nature: 2.62 MeV.  I use this bottle as a source of 2.62-MeV gamma radiation to calibrate the high end of the energy scale in scintillation spectrometry.

h1

Nuclear Collection (Part II)

March 1, 2009

Here are some more photos of my radioactive material collection. Featured today are radioactive vacuum tubes, radioactive optics, radioluminous items containing radium, and some recently-acquired resistors containing uranium.  I collect and buy radioactive material (duh!).  If you have some, and it’s in need of a good home, let me know!

radcollection_tubesMany types of electronic tubes contain radioactive material. Click on the thumbnail for a larger, numbered image. The purpose of adding a radioisotope to a vacuum tube is usually to ionize residual gas in gas-filled types, improving the timing characteristics or helping to “strike” a discharge.  Uranium glass saw much use in the metal-to-glass seals for tubes of all kinds.  Its coefficient of expansion more closely matches the metal than the regular soda glass of the package, and the slight radioactivity is merely incidental.  Various isotopes are found in tubes: these can include artificial H-3, Ni-63, Kr-85, Co-60, and Cs-137; and natural Ra-226 and Th-232.  The activity is usually internal to the tube, but some of the examples shown here feature external radium sources.

radcollection_lensesSome lenses contain thoria (ThO2) to improve the refractive index while keeping dispersion low.  The thorium content can range from barely-detectable to major constituent of the glass.  Along the back row, left to right:

  • Unknown first-generation image-intensifier tube from a military night-vision system.  The output optic on this tube is, as far as optics go, the most radioactive thing I have encountered–it reads 50 kcpm on a pancake GM tube, and about 1.5 mR / hr on an ion chamber.
  • Kodak Pony 135 Model C camera (mid-1950s), with thoriated Anaston lens.  Not all Ponies have radioactive lenses.  Reads 4500 cpm on a pancake GM tube.
  • Angenieux zoom lens for television or film, Type 10 x 15 B.  Reads 350 cpm on a pancake GM tube (the radioactive lens itself is buried deep within the assembly).
  • In front are some small lenses salvaged from a variety of ’50s-’60s-vintage still and movie cameras.  Hottest among these is a Kodak 3″ f/2.8 Ektar lens, reading 10 kcpm on a pancake GM tube.

radcollection_radiumRadium paint was used for glow-in-the-dark applications from the 1910s through the ’60s.  Many people know of the tragedies suffered by early watch dial painters due to ingestion of radium.  The articles in my collection were probably all machine-painted, however.  The glow from these devices is feeble today, the result of radiation “burnout” of the zinc sulfide phosphor and NOT because the radium has decayed.  It remains virtually as radioactive as it ever was.

  • In the back are WW-II / Korean War vintage military aircraft instruments: gyrocompasses, a radio compass, fuel gauges, an “oxygen flow indicator” and a small pressure gauge.  The latter item was sold in large quantities in 2002-2003 by various surplus dealers.   The larger dials probably contain a few microcuries of Ra-226.
  • Lower left: radium-tipped toggle switches.  Radium content is probably a few tenths of a microcurie.
  • Right: some consumer timepieces with radium–Westclox “Pocket Ben” watch and a Phinney-Walker travel alarm clock.  The older Westclox “Big Ben” clocks are also reliably radioactive and still inexpensive and commonplace collectibles.
  • Center: two instrument knobs with external radium paint: “Pull out before preset tuning” and an illuminated on/off knob
  • Center right: 10 ampere circuit breaker with radium strip that is visible when breaker is open
  • Center foreground: two radium drawer pulls (or glowing eyes for a radioactive teddy-bear?)

radcollection_resistorsRadioactive power resistors obtained at “The Black Hole” in Los Alamos.  The activity appears to be due to uranium and its daughters as determined by gamma spectroscopy.  At first I thought the uranium was in the black vitreous glaze, but it actually appears to be distributed throughout the volume of the resistor material (also black in color).  The activity is relatively mild–only about 300 CPM above background on a pancake GM detector.