Posts Tagged ‘chernobyl’

h1

Chernobyl Unit 2, November 2016 (Part I)

January 17, 2017

Please select any photo in the gallery for a larger version and descriptive caption.

This photo gallery documents the main circulation pumps and the repair/transport corridor in Unit 2 at the Chernobyl Nuclear Power Plant as they appeared in mid-November 2016.  Unit 2 operated until a fire damaged the No. 4 generator and the unit’s feedwater machinery in October of 1991, after which the unit was permanently shut down.  It is an example of the earliest variant of the RBMK plant design, following the model of the Leningrad units.  The main circulation pumps in these earlier units are aligned on an axis perpendicular to the turbines and on the +1.0m elevation, whereas in the later generation of RBMK units (e.g. ChNPP Units 3-4), the pump engines are on the +12.5m elevation and aligned parallel with the turbines so that twinned units could share the same MCP engine halls and associated cranes.  The earlier-generation units are smaller than the later generation, mainly because they lack a steam-condensing “accident localization system” beneath the reactor.

Locations shown in the photo gallery may be identified on the following plan of the +1m elevation in the Unit 2 reactor building, taken from plant safety documentation:

h1

2015 Photos from Chernobyl

June 11, 2016

I have been extremely slothful in attending to my blog, and if anyone still reads it, I apologize and thank you for your patience!  I’m attempting to catch up for the last few years in my spare time, posting the content and photos I’ve intended to publish more punctually but somehow haven’t found the time to do yet.  The following images were taken at Chernobyl Nuclear Power Plant in September of 2015 (with a couple from 2013, another trip I somehow managed not to document on my blog).  Amazing progress has been made on the New Safe Confinement.

h1

Videos from my recent trip to Chernobyl

September 17, 2011

Two videos from my most recent radioactive scavenger hunt in Ukraine’s Chernobyl exclusion zone are now on YouTube.  One features a pinhead-sized piece of spent nuclear fuel (pictured at left) that was carefully excavated from under about six inches of soil with the aid of a CDV-700 Geiger counter probe, taken back to our hotel through Checkpoint Lelev (where the scintillation portal monitor was conveniently out of service), and analyzed using a scintillation detector and Marek Dolleiser’s “PRA” software—a clever MCA emulator that uses one’s computer audio device as a nuclear ADC.  Check it out (I recommend selecting the HD format at the bottom of the window):

The second video illustrates some environmental radiochemistry at work, namely the affinity of the beta emitter Sr-90 for the phosphate matrix of deer antlers.  In this video I show that although the gamma activity (i.e. Cs-137 activity) in a pair of shed antlers is no different than local background, the beta activity is much higher.  The reasons for Sr-90’s notoriety are tangibly apparent: a decades-long half life that keeps it cracklin’ long after the accident, and alkaline-earth chemistry that favors uptake in bone.

h1

Inside Chernobyl Nuclear Power Plant 2011, Part IV: Switchyard Control Room

August 11, 2011

Its reactors have been out of service for years, but Chernobyl Nuclear Power Plant’s vast electrical switchyard still buzzes with some of the highest voltages on the European continent.  It’s a distribution hub that channels hundreds of megawatts generated at other plants to consumers in northern Ukraine and southern Belarus.  The bustling control room for the switchyard is sited between the Unit 1 and Unit 2 reactors along the deaerator corridor.  The men who work there not only control the flow of juice to parts distant, but also are responsible for maintaining the power plant’s grid connection and backup Diesel generators: power is essential for cooling thousands of spent fuel assemblies.

Click any photo below for a larger version with my description; click again for a full-size file.

For this summer’s other photos from ChNPP, see Part I, Part II, and Part III.

To compare and contrast facilities at Chernobyl with those at an operational RBMK-1000 plant, please see this recent photodiary featuring the Kursk NPP (the 14th photo shows one of the switchyard control rooms there).

h1

Inside Chernobyl Nuclear Power Plant 2011, Part III: Dosimetry Control Room

August 9, 2011

With a decade-plus lead on the rest of the RBMK fleet in confronting the uncertainties of the decommissioning process, which involves fuel movements and the continuing generation of radioactive wastes, Chernobyl Nuclear Power Plant must continue to remain particularly vigilant on matters of radiation safety.  There is a well-maintained underground bunker at the ABK-1 administrative building that serves as a modern emergency operations center, for example.  This year we visited the Phase I dosimetry control room as part of our tour, where a dosimetrist monitors radiation levels and aerosol levels in the rooms of the Unit 1 and Unit 2 complex, and monitors discharge of radioactivity from the operational VT-1 ventilation stack.  The dosimetry control room is accessed from the +10-meter deaerator corridor, between Unit 1 and Unit 2 reactor buildings.

Click any photo below for a larger version with my description; click again for a full-size file.

For this summer’s other photos from ChNPP, see this post and this post.

To compare and contrast facilities at Chernobyl with those at an operational RBMK-1000 plant, please see jencha’s wonderful recent photodiary from the Kursk NPP (the 12th photo shows the dosimetry control room there with obviously more modern equipment than ChNPP).

h1

Inside Chernobyl Nuclear Power Plant 2011, Part II: Deaerator Corridor and Unit 1 Control Room

August 8, 2011

More interior photographs from the Chernobyl Nuclear Power Plant, this selection focusing on highlights of the Unit 1 control room and the building’s perhaps most distinguishing interior feature, its 600-meter-long “Gold Corridor.” Right-click any photo and select “open in new window” (or equivalent) for a larger version with my caption.

For this summer’s photos of the Unit 3 end of the power plant, see this post.

Our photos from ChNPP last year are displayed at this site.

The floor plan below is compiled from an official plant safety document and is meant to help illustrate the geography of the power plant on the +10-meter elevation, near Units 1-2.

+10-meter floor plan, Phase I, Chernobyl Nuclear Power Plant

h1

Nuclear Collection (Part VI)

March 13, 2011

Click any thumbnail image to view in full size. And, as always, if you have something radioactive and in need of a good home, contact me: I buy and trade all the time. Enjoy!

Lithograph by Leo Vartanian commemorating the CP-1 nuclear reactor.  In what has to be the winningest art idea ever,  moderator graphite from the historic reactor was actually ground up to make the ink in which the portraits of physicists Leo Szilard, Arthur Compton, Enrico Fermi, and Eugene Wigner were rendered.  Prints were distributed by Argonne National Laboratory to honor long and illustrious careers.  The ink is not detectably radioactive.  See my other mementos of CP-1 here. Size is 17″ by 22″(framed).

Though it is in many ways a modern and progressive nation, Japan steadfastly clings to certain curious anachronisms.  From the land of whaling and sailor-suit school uniforms come these examples of radioactive “quack cures”, modern instances of a fad phenomenon that, half a century ago, had largely been driven into extinction in the US and Europe.  Both items pictured—the Wellrich Co. Ltd. “Health Card” (top) and the “Mainasu ION” plaque (bottom)—contain natural thorium as verified by gamma spectrometry.    The “Health Card” claims to offer benefits that include denaturing nicotine in cigarettes.  The health benefits of the negative ion disk aren’t mentioned on it, but surely have no basis in sound science.  It is equipped with an adhesive surface on the back for mounting.  Dozens of varieties of negative ion quack products are peddled by Asian eBay sellers, and I have no idea how many of these items might be radioactive.  The Wellrich card and the ion disk measure 1400 CPM and 550 CPM respectively on a Ludlum 44-9 pancake Geiger tube.  (Donated to my collection by Bill Kolb.)

.

.

.

More radioactive vacuum tubes. All the specimens in this batch were kindly donated anonymously, and all are receiver protection tubes for military radar sets.  In this application, gas breakdown, aided by deliberately-included radioactivity, dissipates any high-power RF energy that finds its way into the receiver waveguide.  From left to right in the top photo: Varian MA37002X with Co-60 (originally “0.7 microcuries max.”), date code 1995; Omni-Wave MPT-24 with (originally) 25.0 microcuries of Kr-85, date code 1984; Omni-Wave MPT-47-B with (originally) 25.0 microcuries Kr-85, date code 1976.  The gamma spectra of the two Kr-85 tubes clearly shows the residual 514-keV gamma activity of the 10.8-year fission product and even permits a coarse estimate of the quantity remaining (about 3 microcuries in the MPT-24, 0.2 microcuries in the MPT-47-B).  More radioactive tubes are described here and here.

Large receiver protection tube with tritium. The application is the same as the tubes mentioned above, but this one is a monster, measuring almost 16 inches in length.  The part number is MA3948L-12, the manufacturer is Varian, and the contents are mostly argon and a small amount of radioactive tritium (H-3), 10 mCi.  The second photo shows an electrodeless RF discharge established in the tube.
… … … … … … … … … … … … … … … … … … … .. ….. … ….. … ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..

.

.

.

.

.

.

.

.

.

Contaminated Geiger counter strap from Chernobyl trip. Last summer’s trip to Pripyat resulted in detectable radioactive contamination of my shoes (see description) as well as this shoulder strap.  Gamma spectrometry easily identifies Cs-137, one of the handful of long-lived fission products, in a hot spot on the strap.  The activity in the spot is small, only about one nanocurie (~35 Bq).  Some possible contribution from the synthetic transuranic americium-241 is also noted.

%d bloggers like this: